
Exploring Dependencies Among Inconsistencies to
Enhance the Consistency Maintenance of Models

Luciano Marchezan
ISSE - Johannes Kepler University Linz

Linz, Austria

Wesley K. G. Assunção
North Carolina State University

Raleigh, USA

Edvin Herac
Saad Shafiq

Alexander Egyed
ISSE - Johannes Kepler University Linz

Linz, Austria

Abstract—Consistency maintenance is paramount for software
engineering, as it improves/guarantees the quality of artifacts
(e.g., models) during maintenance and evolution. To perform
this maintenance, consistency rules (CR) are commonly defined
and applied to evaluate model elements according to desired
properties. By empirical studies, it is known that CRs commonly
evaluate similar model elements (e.g., multiple CRs checking the
consistency of a UML class). Thus, we hypothesize that CRs can
be used as a means to identify dependencies among inconsis-
tencies and support consistency maintenance tasks. Currently,
however, no study investigates to what extent dependencies can
be identified and how they can be used to repair inconsistencies.
In this paper, we explore dependencies between CRs to identify
and group dependent inconsistencies. For that, we define a
metamodel that allows dependencies to be expressed. Further-
more, we propose a consistency maintenance and dependency
analysis mechanism that uses such a metamodel. Additionally, the
approach generates repairs for the inconsistencies, considering
the groups of dependencies to identify overlapping and conflicting
repairs. To evaluate the approach, we conducted an empirical
study with 48 UML models and 27 CRs. The results show that our
approach identifies dependencies between inconsistencies (46%
of the inconsistencies have dependencies), within a reasonable
time, 10ms on average in the worst case. Results also show that
dependent inconsistencies can be grouped and used together to
identify repairs that are either overlapping (26% on average) or
conflicting (58% on average).

Index Terms—Consistency rules, Inconsistency detection, De-
pendency analysis, UML model repair

I. INTRODUCTION

Inconsistencies lead to cascading problems during the evolu-

tion of the software [1], [2], such as not meeting requirements,

creating errors, and having a negative impact on the safety of

the system [3]. To mitigate these problems, inconsistencies

need to be identified and repaired. This process is referred to

as consistency maintenance (i.e., a combination of consistency

checking and repairing [4]–[9]). Consistency maintenance

has proven benefits, aiding practitioners to find and repair

inconsistencies in software models [3], [10]–[12]. This is

evidenced by studies in the industry, reporting the importance

that proper consistency maintenance in models has for the

software development process [13]–[16]. In the literature and

practice, we can find different strategies to perform con-

sistency maintenance [17]. Among these strategies, the use

of consistency rules (CR) is one of the most common [3].

This strategy allows the flexible application of consistency

maintenance, as CRs can be defined for different types of

models and domains. Furthermore, CRs can also be extended

to generate repairs [18], [19], recommending changes that fix

model inconsistencies.

Approaches for consistency maintenance, however, are

mostly limited to considering inconsistencies and their repairs

individually [20]–[23]. Only a few studies investigate how

inconsistencies are related to each other, and how this may

benefit the repairing process [24], [25]. Preliminary results

from these studies showed the potential benefits that the

relationships (in this work defined as dependency) between

inconsistencies can bring to consistency maintenance. For

instance, dependencies can be used to identify model elements

that are critical (i.e., evaluated by several CRs) and deserve

further attention when repairing an inconsistency. Furthermore,

when multiple inconsistencies need to be repaired, the repair

of one inconsistency may be used to fix another one (i.e., an

overlapping repair). Similarly, a repair from one inconsistency

may overwrite the repair of another, thus creating a conflict.

This conflict prevents both inconsistencies from being fixed,

and thus requires input from practitioners.

Once dependencies are identified, they can be used to group

inconsistencies. These groups can aid practitioners in the

repairing process by identifying overlapping and conflicting

repairs, thus, reducing the number of repair alternatives. This

is important as the number of repair alternatives may grow

exponentially depending on the model and CR applied [21],

[26]. Several approaches from the consistency maintenance

field have investigated different strategies to reduce or rank

repair alternatives [19], [27]–[29]. However, exploring the

dependencies of inconsistencies to reduce possible repairs is

still an open opportunity not explored by other approaches.

To explore the use of dependencies during consistency

maintenance, in this work, we analyze and identify depen-

dencies among CRs as a means to identify dependencies

between inconsistencies. Based on this goal, we formulate the

following assumptions (detailed in Section II). First, we argue

that the properties and elements being analyzed by CRs can

be compared to identify and group dependent inconsistencies

(Assumption 1). This leads us to define the first research

question (RQ) of this work: RQ1) To what extent can the CRs

definition and execution be used to identify and group depen-

dent inconsistencies? Second, these groups can be explored

147

2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

2640-7574/24/$31.00 ©2024 IEEE
DOI 10.1109/SANER60148.2024.00023

to analyze inconsistencies that should be repaired together

to identify overlapping and conflicting repair locations, thus

minimizing the impact of repairs and aiding practitioners in

reducing the number of repair alternatives (Assumption 2). For

this assumption, we formulate the following RQ: RQ2) To

what extent can grouped inconsistencies be used to identify

overlapping and conflicting repair locations in a model?

The investigation of these RQs leads us to propose an

approach to analyze the definition and execution of CRs to
identify dependencies between inconsistencies, as well as the
possible implications of grouping inconsistencies to repair
models. The proposed approach (described in Section III)

consists of: i) a metamodel that allows the definition of

dependencies between CRs and inconsistencies during the

maintenance and repairing; ii) an automated dependency anal-

ysis between CRs, used to identify and group dependencies

between inconsistencies; iii) a mechanism to generate and

identify overlapping and conflicting repairs based on the

groups, aiding practitioners to reduce fixing locations.

Furthermore, this work contributes with an empirical eval-

uation (explained in Section IV) composed of 48 UML mod-

els and 27 CRs that have been used in recent benchmark

studies [30], [31]. The results of the empirical evaluation

show that 66% of the CREs and 46% of inconsistencies

had dependencies. The runtime required is satisfactory as,

in the worst case, the approach requires 10.35ms on average

to detect dependencies. Results also reveal that dependencies

between inconsistencies can be used to group and repair

inconsistencies together, with 26% of overlapping repairs and

58% of conflicting repairs detected on average. These results

can be used to reduce the effort of selecting repair alternatives,

as 39% of shared repair locations were identified on average.

Based on the analysis of the results and our experience in

conducting this work, we provide a discussion about lessons

learned and limitations of the approach, pointing to open

research opportunities (Section V). Lastly, Section VI presents

and compares related work, highlighting the limitations of

existing studies. Section VII concludes this work with final

remarks.

II. BACKGROUND AND MOTIVATION

In this section, we describe the concepts and current limita-

tions of existing literature that motivate this work. For that, we

introduce an illustrative example to describe the motivation of

this work. This example is composed of UML diagrams of a

Robotic Arm, shown in Figure 1, and a set of four consistency

rules (CR) applied to them, presented in Listing 1. These CRs

are applied to check if the diagrams, i.e., models, are consistent

according to the UML standard and requirements specification.

The robotic arm has three components, defined in a class

diagram: i) RobotArm with a gripper that can grab and release

objects; ii) Turntable that rotates the arm; and iii) ControlUnit
that manages both the arm and the turntable. The project

also has a sequence diagram showing the messages exchanged

between the components and a state chart describing how the

states of an object from class Turntable can change.

Studies have discussed the importance and applicability of

consistency maintenance in design models, such as UML [17].

Amongst the strategies to apply consistency maintenance,

the use of CRs is one of the most well-known and widely

applied [3]. Among the languages capable of defining CRs,

OCL [32] is the second most adopted [33], as it is part

of the UML standard [34]. Hence, several approaches use

OCL for consistency maintenance of a variety of models

from different domains [20], [21], [27], [35], [36]. In addi-

tion, UML models with CRs written in OCL are the most

common in the evaluation of consistency maintenance and

repair approaches [22], [37]. Based on this information, in this

work, we consider OCL as the mechanism for defining CRs,

although our approach is designed to be used alongside any

CR language (see Section III). Despite the wide use of CRs for

consistency maintenance in both research and practice, there

are still opportunities to be explored, as discussed next.

Returning to the illustrative example, for checking the con-

sistency of the models from Figure 1, four CRs are defined in

Listing 1. CR1 and CR2 are applied to the classes, checking if

their operations are unique and have corresponding transitions,

respectively. CR3 and CR4 are applied to the messages of

the sequence diagram, checking if they have corresponding

operations and transitions, respectively.

Once the changes are applied in the models, the CRs are

executed to check if the elements fulfill them. The execution

of a CR into a model element is defined as a consistency rule

evaluation (CRE), thus inconsistencies are CREs where the el-

ement does not fulfill the CR [37]. Inconsistencies are harmful

to the models, and for repairing them, several approaches are

proposed [19]–[21], [27], [38]. These approaches, however,

treat inconsistencies individually, asking practitioners to select

the ones that they want to repair based on their knowledge. A

challenging characteristic of repairing inconsistencies is that

a single repair may affect multiple CREs (even the consistent

ones) [26], [31]. This happens because the repairs can affect

the same properties of elements that are being analyzed by

other CRs.

Since the CREs are found based on the execution of a

CR in a model element, we assume that CRs and the model

elements where they are applied can depend on other CREs.

This dependency is illustrated by Change 1 in Figure 1,

which renames two transitions in the state diagram, from

t1[turnOrStop] and t2[turnOrStop] to t1[turn] and t2[stop],

respectively. This change creates two inconsistencies. The

first one is related to CR2, as the class Turntable does not

have operations corresponding to the transitions t1[turn] and

t2[stop]. The second one is related to CR4, as the messages

2.turnOrStop() and 3.turnOrStop() do not have corresponding

transitions. Both CR2 and CR4 rely on the name of the

transitions to check for consistency. Thus, changing the name

of a transition will impact inconsistencies related to both CRs.

The same principle applies during the repairing of an

inconsistency, as the changes performed by the repair can

create inconsistencies for other CRs. For instance, to be

consistent with CR1, the class RobotArm in Figure 1 has to be

148

Listing 1 A set of consistency rules applied to the UML diagram from Figure 1

c o n t e x t C l a s s inv :
CR1 : s e l f . ownedOpera t ion −>f o r A l l (op1 , op2 : op1 <> op2 i m p l i e s op1 . name <> op2 . name) − The c l a s s must have un iq ue

o p e r a t i o n names

CR2 : s e l f . ownedOpera t ion −>e x i s t s (op | s e l f . s t a t e C h a r t s −>e x i s t s (s c : S t a t e C h a r t | sc . t r a n s i t i o n s −>e x i s t s (t : t . name = op . name)))
− A l l c l a s s o p e r a t i o n s must have a c o r r e s p o n d i n g t r a n s i t i o n

c o n t e x t Message inv :
CR3 : s e l f . r e c e i v e E v e n t . asType (I n t e r a c t i o n F r a g m e n t) . covered −>f o r A l l (r | r . r e p r e s e n t s . t y p e . asType (C l a s s) . ownedOpera t ion −>

e x i s t s (op | op . name= s e l f . name)) − A l l messages must have a c o r r e s p o n d i n g o p e r a t i o n

CR4 : s e l f . r e c e i v e E v e n t . asType (I n t e r a c t i o n F r a g m e n t) . covered −>f o r A l l (r | r . r e p r e s e n t s . t y p e . asType (C l a s s) . s t a t e C h a r t s −>e x i s t s (
s c : S t a t e C h a r t | sc . t r a n s i t i o n s −>e x i s t s (t : t . name = s e l f . name))) − A l l messages must have a c o r r e s p o n d i n g t r a n s i t i o n

Legend

State: the t:Turntable object

Class: A robotic arm

Seq.: Grabbing and releasing an object

1: grabOrRelease()

4: grabOrRelease()

c:ControlUnit r:RobotArm

ControlUnit

Turntable
-

+ turnOrStop()

turning
t1[turnOrStop]

idle

RobotArm

+ grabOrRelease()
+ grabOrRelease()

t:Turntable

2: turnOrStop()
3: turnOrStop()

t2[turnOrStop]

 + grab()
+ release()

2

 Change
X

Inconsistency created

 1t1[turn]
t2[stop]

CR2

CR4

CR3

Fig. 1: Inconsistencies created due to changes in UML dia-

grams of a Robotic Arm

changed because it has two operations with the same name,

namely grabOrRelease. Change 2 modifies the operations

to grab and release. This change repairs the inconsistency

related to CR1, however, it creates a new inconsistency related

to CR3. This inconsistency happens because the messages

1:grabOrRelease() and 4:grabOrRelease() in the sequence

diagram no longer have a corresponding operation. In the case

of CR1 and CR3, both rely on the name of an operation

to check the consistency, thus if an operation changes its

name, this change may impact both CRs. In summary, when

considering repair alternatives, practitioners must be aware of

their possible negative impact on the models. Assumption 1:
The definition of CRs and the generated CREs can be used
to identify and group inconsistencies (or consistent CREs)

that have dependencies with each other. These groups can

be shown to practitioners, giving them an indication of what

elements would be impacted (in terms of consistency) by the

execution of a change or repair.

Furthermore, since CR2 and CR4 are dependent, their

inconsistencies may also be if they rely on the same model

elements, which are the transitions t1[turn] and t2[stop].

These inconsistencies from CR2 and CR4 may be repaired by

renaming the messages and operations from turnOrStop() to

turn() and stop(), respectively. This requires changing different

diagrams with multiple changes. A simpler solution, however,

would be to undo Change 1 , assuming that no other change

was performed in the meantime, by renaming the transitions

back to turnOrStop. This repair would fix all inconsistencies

related to CR2 and CR4 while only changing one diagram.

Thus, reducing the number of repairing locations, as the repair

applied is overlapping for both inconsistencies.

Similarly, repair alternatives generated for one inconsistency

may prevent the repairs of others at the same time. For

example, to repair the inconsistencies created by Change 1

in relation to CR2 (the name of the operations in the class

Turntable) the operation turnOrStop() can be renamed. To

match the transition t1[turn], turnOrStop() is renamed to

turn(). However, the t2[stop] transition is still inconsistent,

thus the operation can be renamed again to stop(). This

overwrites the previous repair and recreates the inconsistency

related to transition t1[turn]. To repair both inconsistencies

related to CR2, the repair alternatives have to consider both

at the same time to prevent these conflicting changes. Hence,

these conflicting repairs can be removed from the alternatives,

aiding practitioners to reduce the number of possibilities. As-
sumption 2: Grouped inconsistencies can be repaired together
to identify overlapping and conflicting repair locations, aiding
to reduce the number of alternatives.

The aforementioned assumptions are the main motivation

for our work. Although these are investigated in this paper by

considering OCL only, these assumptions are related to most

types of consistency maintenance approaches.

III. APPROACH

In this section, we present the approach designed to explore

the identification of dependencies of CRs and inconsistencies,

149

Consistency
Rule

ModelElement

0..*
dependencies

0..*

scope
ConsistencyRule

Evaluation

result: Boolean

0..*

0..*

ModelElement
Type

1
0..*

0..*

1

context

Property

Value

11..*0..*

1..*

PropertyType

1

1..*

0..*
dependencies

0..*

1..*
0..*

Fig. 2: Metamodel used by the approach

and the possible implications of dependencies when repairing

inconsistent models.

A. A Metamodel for Inconsistency Dependencies

The definitions described in this section are illustrated by

the UML class diagram presented in Figure 2. This diagram

represents a metamodel that is used by our approach when

applying CRs (Subsection III-B), for dependency analysis

(Subsection III-C), and for repair generation and analysis

(Subsection III-D).

A ModelElement represents an element from a given model

that has a ModelElementType (top-right in Figure 2). For

instance, a UML class diagram can have a class called

“RobotArm” of the type UML Class (see Figure 1). A model

element has Property(ies) that contain Value(s). A property

is of a PropertyType which describes the cardinality of the

property (e.g., Set) and the Value type (e.g., String). One

example is the property ownedOperation that describes all

operations from a class. Model element types are connected

to the ConsistencyRule as the context of a CR. For instance,

CR1 and CR2 from Listing 1 are defined for the context

Class. A ConsistencyRule also has a relationship with the

ModelElement class, defined as the ConsistencyRuleEvalua-
tion (CRE) associative class (bottom-left in Figure 2). Each

CRE represents the application of a CR in a model element

of that CR’s context and evaluates to a Boolean result, true
(consistent) or false (inconsistent). The CRs assess the model

element properties and their values to check the consistency.

For example, CR1 assesses the ownedOperation property and

generates three CREs, one for each class from Figure 1. The

CREs’ result is true for classes ControlUnit and Turntable and

false for class RobotArm.

Continuing on the metamodel from Figure 2, the dependen-
cies relationship between CR with itself allows the creation

of dependency relationships between one or more CRs. For

instance, CR1 and CR3 (Listing 1) are dependent because they

both evaluate the same property from an operation, namely the

operation name. The CR’s dependencies are used to select

the possible CREs that may be dependent, i.e., for each

dependent CR, we retrieve their CREs to be analyzed (details

in Section III-C). Hence, CREs can also have dependencies

with each other, as the metamodel also defines dependencies

Legend

CRE 1

forAll self.ownedOperation

<>

implies

grabOrRelease()¹ grabOrRelease()²

<>

grabOrRelease()¹ grabOrRelease()²

op1 <> op2 op1.name <> op2.name

result = true result = false

CR1 (RobotArm)

Fig. 3: CRE tree created by applying CR1 to class RobotArm

for them. For instance, a CRE created by applying CR1 to

the class RobotArm has a dependency to the CRE created

by applying CR3 to the r:RobotArm lifeline in the sequence

diagram. This dependency is illustrated by the negative impact

of Change 2 to the sequence diagram in Figure 1. Although

CR1 and CR3 are dependent, not all their CREs will be

dependent on each other. For example, the CRE created by

applying CR1 to class RobotArm does not depend on the

CRE created by applying CR3 to the t:Turntable lifeline. This

happens because these CREs do not have the same model

elements in their scope (details in Section III-C).

The scope of a CRE is defined by the relationship between

CREs and model elements in Figure 2, and describes which

model elements are assessed when a CRE is created. For

instance, when a CRE for CR1 is created for class RobotArm,

the class itself, and all its operations are assessed. Hence, the

scope of this CRE contains the class RobotArm and the two

operations grabOrRelease.

The metamodel allows our approach to be adopted for dif-

ferent CR languages and models. The only requirement is that

these can be represented using a property-value representation.

B. Applying CRs to Models

For each CR defined for a context, our approach applies it

to all model elements of that context. This is achieved by

traversing the CR’s expressions and evaluating the proper-

ties of the model element in context. Each expression (e.g.,

forAll, equals) is evaluated individually, and their results

are concatenated based on the CR’s definition. These results

are represented as the CRE tree-like structure, illustrated in

Figure 3. In this example, CR1 is applied to class RobotArm,

creating CRE1 with each node of the tree representing an

expression from the CR, namely forAll, implies, and two not
equals (<>) expressions. The result of each expression is

described in Figure 3 by the line connecting the tree nodes

(solid for true and dashed for false).

For instance, the expression op1.name <> op2.name, eval-

uates to false (dashed line), as both operations have the same

name. This leads to the parent expressions implies and forAll
also resulting in false, meaning that CRE1 is inconsistent.

The checking is performed incrementally, thus every time a

model element changes, CRs that assess that model element

150

Algorithm 1 Dependency analysis for CRs

1: function DEPENDENCYANALYSIS(crs, neCr)
2: for cr in crs do
3: if checkDependency(cr, newCr) then
4: cr.dependencies.add(newCr) � Oppos. relation is also created

5: crs.add(newCr)
6: return crs
7: function CHECKDEPENDENCY(cr1, cr2)
8: for prop1 in cr1.propertiesChecked do
9: for prop2 in cr2.propertiesChecked do

10: if prop1.name = prop2.name then
11: if prop1.element = prop2.element then
12: return true
13: return false

are applied to it, creating or updating a CRE. Additional

information about this step (including algorithms) are provided

in our online appendix [39].

C. Dependency Analysis

The dependency analysis is performed in two ways: i) for

CRs and ii) for CREs. Considering the dependency analysis

of CRs, it is triggered when a CR is created or updated.

The approach analyzes all existing CRs to check if they are

dependent on each other. This is performed by the dependen-
cyAnalysis function described in Algorithm 1. The function

takes as parameters a set of CRs, plus the newly created or

updated CR. In case the CR was updated, it is first removed

from the set. The function iterates over the crs (line 2), calling

the checkDependency function and passing each CR from the

set and the new CR as parameters (line 3).

The checkDependency function iterates over all properti-
esChecked from both CRs (lines 8 and 9). The properti-
esChecked is a set with all properties from model elements

being assessed by the CRs in their expressions. If the two

properties from both CRs have the same name and belong

to the same model element type (lines 10 and 11), then a

dependency is found, returning true (line 12), otherwise the

function returns false (line 13). If the return of the checkDe-
pendency function is true, a dependency between the two CRs

is created (line 4). For example, considering CR1 and CR3 in

Listing 1, both rules assess the name of a class operation. Thus,

a dependency between these two CRs is found and created.

A dependency is always bidirectional, Figure 4 illustrates an

example of dependency, showing that CR1 depends on CR3

and that CR3 depends on CR1.

The dependency analysis of CREs is performed by the

dependencyAnalysis function described in Algorithm 2. This

analysis is triggered after creating/updating a CRE. This is

performed either when a CR is created/updated or when a

model element is changed. The dependencyAnalysis of CREs

is similar to the dependencyAnalysis of CRs. The main dif-

ference is that the function only compares CREs in case that

their CRs have dependencies with each other or if they have

the same CR (line 3). It is important to also check CREs

originating from the same CR because they will share the

same properties from the same model element types. Thus, it

is also possible that their CREs have similar elements in their

scope. The checkDependency function iterates over the scope

Algorithm 2 Dependency analysis for CREs

1: function DEPENDENCYANALYSIS(cres, neCre)
2: for cre in cres do
3: if cre.cr.dependencies.contains(newCre.cr) or cre.cr = newCre.cr then
4: if checkDependency(cre, newCre) then
5: cre.dependencies.add(newCre) � Oppos. relation is also created

6: cres.add(newCre)
7: return cres
8: function CHECKDEPENDENCY(cre1, cre2)
9: for element in cre1.scope do

10: if cre2.scope.contains(element) then
11: return true
12: return false

of the first CRE (line 9) to check if an element from the scope

is also part of the scope of the other CRE (line 10). In case

this is true, there is a dependency between both CREs (created

bidirectionally on line 5).

If we consider CREs created for CR1 and CR3 from List-

ing 1, since both CRs are dependent on each other, all CREs

from them must be checked for dependency. As illustrated in

Figure 4, dependencies are created between CRE1 and CRE4,

CRE1 and CRE5, CRE4 and CRE5, CRE2 and CRE6, CRE2

and CRE7, and CR6 and CR7. The dependencies of these

CREs are found because they share the operations of the same

class, namely RobotArm for CRE1 and Turtable for CRE2,

in their scope. Notice that CR3 also checks the operations

of a class, although being defined in the message context.

By supporting the identification of dependencies among CRs

and their CREs, the approach can then group the inconsistent

ones to be fixed together. The grouping is achieved by using

one inconsistency as the origin (e.g., CRE4 after change 2)

and retrieving its dependencies. Thus, one group would be

composed of CRE4, CRE1, and CRE5. Since CREs 4 and 5 are

inconsistent, they can be fixed together to minimize the impact

of repairs as well as preventing possible conflicts (details in

Section III-D). By allowing the identification and creation of

dependencies and using them to group inconsistencies, our

approach contributes to Assumption 1.

D. Repairing Dependent Inconsistencies

The repair generation and execution adopted in our approach

are based on previous state-of-the-art approaches found in

the literature [4], [7], [19]. The repairs are generated by

traversing the CRE tree (Figure 3). After traversing the tree, a

repair action is generated for each inconsistent node based on

generator functions defined as part of the expression. Thus,

a repair action is defined as a single change performed in

a model element to fix a given inconsistency. A repair is a

collection of repair actions that together fix the inconsistency

(i.e., one inconsistency may require multiple actions). Due to

the space limitation, details about repair generation are given

in our online appendix [39].

In this context, the group of dependencies can be beneficial

in deciding how to repair multiple inconsistencies. For exam-

ple, Change 1 (Figure 1) created multiple inconsistencies

related to CR2 and CR4. Since these inconsistencies are

dependent on each other, analyzing them together allows

practitioners to check for overlapping repairs (i.e., repairs that

151

CRE1
CR1 (RobotArm)

Be
fo

re
 C

ha
ng

e

CR1

context: Class

CR3

context: Message

CRE2
CR1 (Turntable)

CRE3
CR1 (ControlUnit)

CRE4
CR3 (1:grabOrRelease)

CRE5
CR3 (2:grabOrRelease)

CRE6
CR3 (1:turnOrStop)

CRE7
CR3 (2:turnOrStop)

Legend

Dependency Consistent CRE Inconsistent CRE

CRE1
CR1 (RobotArm)

Af
te

r C
ha

ng
e

CRE2
CR1 (Turntable)

CRE3
CR1 (ControlUnit)

CRE4
CR3 (1:grabOrRelease)

CRE5
CR3 (2:grabOrRelease)

CRE6
CR3 (1:turnOrStop)

CRE7
CR3 (2:turnOrStop)

2
2

Fig. 4: Dependency analysis of CR1, CR3 and their CREs

can be applied to both inconsistencies) to reduce the number

of possible alternatives. For example, consider Change 2

performed in class RobotArm (Figure 1). This change is

repairing CRE1 by modifying the name of the operations

from the RobotArm class. Figure 4 illustrates the CREs that

are impacted by Change 2 , which repairs CRE1 but breaks

CRE4 and CRE5 (bottom part of the figure). In this case, if

instead of renaming both operations the repair deleted one of

the grabOrRelease(), all CREs would now be consistent. This

would also reduce the number of affected fixing locations, as

only one change would be required.

Similarly, the groups can be used to identify conflicting

repairs, such as the example of fixing the inconsistencies

related to the transitions t1[turn] and t2[stop]. Our approach

supports the identification of overlapping and conflicting re-

pairs by retrieving all repair actions from one inconsistency.

Then, comparing all these repair actions with the actions from

dependent inconsistencies. During this comparison (shown in

Algorithm 3), if two repair actions (one from each inconsis-

tency) are exactly the same, an overlap relation is created

between them (line 5). If not, they are compared to check if

they are conflicting. A conflict is found if one repair action

(r1) matches one of the following conditions when compared

to another repair action (r2), given that r1 and r2
originate from different inconsistencies: i) r1 modifies the

same property of the same model element modified by r2;

or ii) a r1 deletes a model element that was added/modified

by r2 (and vice-versa). If any of these conditions are true,

the approach creates a conflict relationship between r1 a

r2 (line 8). For both types of relationships (overlaps and

conflicts), the relation is bidirectional.

Algorithm 3 Checking relationships between repair actions

1: function CHECKREPAIRRELATION(ncon1, ncon2)
2: for ra1 in incon1.repairActions do
3: for ra2 in incon2.repairActions do
4: if ra1.overlapsWith(ra2) then � Oppos. relation is also created
5: ra1.addRelation(Operator.OVERLAP, ra2)
6: else
7: if ra1.conflictsWith(ra2) then � Oppos. relation is also created
8: ra1.addRelation(Operator.CONFLICT, ra2)

The number of repair actions may grow exponentially to

a point where it is not even measurable by current technol-

ogy [29]. Thus, the comparison between repair actions is only

executed considering a group of dependent inconsistencies.

Since the dependency is found based on similar properties and

elements that are part of a CRE’s scope, the repair actions

would likely modify similar elements and properties. Once

again, conflicts can be used to reduce the number of fixing

locations. For example, practitioners can ignore conflicting re-

pair locations and focus on the non-conflicting ones, reducing

the number of possibilities. Thus, we argue that by supporting

the analysis and identification of overlapping and conflicting

repairs, our approach contributes to Assumption 2.

IV. EVALUATION

In this section, we present the study design, results, and

threats to the validity to evaluate the proposed approach.

A. Prototype Implementation

To evaluate our approach, we implemented a prototype tool

in Java as a service that is part of a server that supports a

generic infrastructure [40]. This infrastructure supports the

connection of different engineering tools by implementing tool

adapters that transform artifacts created in these tools to a

model representation based on the metamodel presented in

Figure 2. Although multiple artifact types are supported by

the server in this evaluation we focus on UML due to the

majority of CRs being defined for UML models.1

B. Study Design

This study was designed with the goal of evaluating our

approach regarding the assumptions described in Section II.

For that, we pose the following research questions.

RQ1) To what extent can the CRs definition and execution
be used to identify and group dependent inconsistencies?
Rationale: to confirm Assumption 1, we investigated how

the approach performs for a variety of models (i.e., ranging

in size and diagram types) and with a diverse set of CRs

(i.e., with different contexts and expressions). Method: we

apply the dependency analysis of our approach in a dataset

of 48 UML models with a set of 27 CRs. This dataset was

created by combining state-of-the-art datasets found in recent

studies [19], [29], [30]. The UML models contain different

types of diagrams, including class, sequence, state, activity,

and use case, among others. The set of 27 CRs is also

1Details about the implementation are available at https://isse.jku.at/
designspace.

152

diverse, checking consistencies for elements from all diagram

types of our dataset. Metrics: i) the size of the models; ii)

the number of CREs (consistent and inconsistent) created by

applying the CRs; iii) the number of CRE dependencies; iv)

the number and size of dependency groups—a group is a

unique set of dependent CREs. Thus, if two CREs have exactly

the same dependencies, only one group is counted since the

dependencies of these two CREs represent the same set; v)

the time required to find dependencies between CREs.

RQ2) To what extent can grouped inconsistencies be used
to identify overlapping and conflicting repair locations in
a model? Rationale: we aim at observing if the group of

dependencies can be used to: i) identify repairs that can

be used to fix multiple inconsistencies (overlapping); ii)

identify inconsistencies that cannot be fixed because repairs

for other inconsistencies prevent that (conflicting); and iii)

identify fixing locations shared by dependent inconsistencies

(Assumption 2). Method: we use the dataset from RQ1 to

generate repairs and compare them considering the groups of

dependent inconsistencies. Metrics: i) number of repairs per

inconsistency; ii) number of overlapping repairs and conflict-

ing repairs in a group of inconsistencies; iii) the number of

fixing locations shared by dependent inconsistencies, which

is obtained by considering both conflicting and overlapping

repairs since both types affect the same location. For the

overlaps and conflict metrics, we compare all inconsistencies

from one group incrementally, to evaluate if the number of

inconsistencies considered has an impact on the results. For

instance, in a group of 4 inconsistencies, we first compare only

the repairs of two inconsistencies, then we compare repairs

from three inconsistencies, and then from all of them.

C. Results and Analysis

In this subsection, we present the results of our study and

the corresponding analysis grouped by RQ. The artifacts and

results are available online [39].

Identifying and grouping dependent CREs: Table I presents

the results of dependency detection for our dataset of 48 UML

models, sorted by size. Notice that we have models ranging

from 79 to 9,823 elements. At first, we can observe that

dependencies were detected in all 48 models. However, not

all models had inconsistencies with dependencies. In general,

the set of 27 CRs was able to create many CREs, ranging

from 94 to 14,510. The number of CREs with dependencies

per model (column #CRE w/ Dep. in Table I) evidences

that the approach can detect many dependencies, considering

the number of CREs created. The time required to detect

dependencies among CREs stayed between 0.55 (Model 43)

and 10.35 (Model 1) milliseconds on average per CRE.

The number of inconsistencies with dependencies varied for

all models (46.36% on average, bottom of Table I). When

analyzing individual models (bar-plots for column #Inc. w/
Dep.), we notice that in some cases the percentage is lower

than 50% (e.g., Models 1, 2, 5, among others). A low depen-

dency between inconsistencies can benefit the repair activity,

TABLE I: UML models sorted by size. The bar plots represent

the percentage of the dependencies found. Time represents the

average time (ms) to detect a dependency.

Id Size #CREs #CRE w/ Dep. #Inc. #Inc. w/ Dep. Time

1 9823 14510 9203 4053 1058 10.35

2 8757 7772 4836 2355 691 4.56

3 8074 9473 6445 3554 1285 5.49

4 5754 8990 7441 3448 2751 4.90

5 4231 2228 1389 534 63 1.25

6 3428 1748 1101 484 141 0.97

7 3216 3168 2173 932 500 1.74

8 2704 3228 2597 1708 1410 1.76

9 2628 2935 1778 776 204 1.65

10 2508 3929 2733 1214 825 2.25

11 2445 393 257 39 0 0.58

12 2245 3502 2575 1121 692 2.08

13 2059 2943 2337 1036 778 1.64

14 1970 2358 1385 546 111 1.29

15 1949 3549 2516 1076 549 2.10

16 1935 1087 654 362 102 0.65

17 1781 1559 924 213 98 0.76

18 1706 2163 1223 444 64 1.28

19 1441 2225 1665 695 503 1.32

20 1437 2106 1693 648 523 1.12

21 1211 1701 1315 602 418 0.94

22 1086 1632 1269 608 441 0.93

23 1032 1921 1580 1031 877 1.11

24 1029 1281 817 290 180 0.65

25 801 853 594 427 291 0.68

26 728 685 308 153 5 0.63

27 617 1206 950 595 493 0.66

28 575 739 513 262 194 0.59

29 560 590 319 171 53 0.64

30 536 480 296 101 0 0.78

31 516 851 703 447 363 0.61

32 452 653 459 256 178 0.66

33 446 625 489 319 249 0.62

34 427 376 180 72 10 0.76

35 425 600 520 276 220 0.75

36 382 567 399 232 149 0.61

37 370 552 283 108 7 0.61

38 254 329 258 143 118 0.73

39 248 267 119 26 0 0.70

40 206 372 282 163 119 0.67

41 202 354 227 65 38 0.89

42 189 448 439 291 285 0.66

43 125 96 43 14 0 0.55

44 103 172 88 35 1 0.62

45 96 94 30 8 0 0.62

46 96 100 50 13 0 0.62

47 88 155 120 70 54 0.55

48 79 106 57 23 0 0.65

Overall Results for the Dependencies Percentage

Dep. Type Min Median. Max Avg Std.
CREs 31.90 68.30 98.00 66.61 13.21
Inc. 0.00 56.05 97.90 46.38 36.10

as non-dependent inconsistencies can be repaired without

creating side effects or conflicts because the inconsistencies

are not dependent on other CREs. This low dependency,

however, reduces the chance of using repairs to fix multiple

inconsistencies, as the inconsistencies are mostly related to the

different model elements.

153

Fig. 5: Results related to the size of groups of dependency

For other models, however, the number of inconsistencies

with dependencies was higher than 50% (e.g., Models 4, 8,

10, 19, 20, among others). For these cases, it is more likely

that repairing an inconsistency may have a high impact on
other CREs. We argue that in such cases, inconsistencies
can be prioritized considering the number of dependencies
found. For this, we can look at the groups of dependencies.

Figure 5 summarizes the results related to the groups of

CREs.2 As illustrated, we notice that the size of the model
does not have a direct impact on the number of dependencies
in a group. This demonstrates the scalability of the approach

as independently of the size of the model, the number of

inconsistencies in a group remains reasonably small (with one

outlier as illustrated in Figure 5). The number of dependent

inconsistencies being small is important as developers have to

deal with the inconsistencies in the groups, and thus having

a large number can lead to the same or even more effort

than just dealing with all inconsistencies (not considering any

dependencies) as traditional approaches may suggest.

Answering RQ1: Our approach can detect a varied amount

of dependencies (66% for all CREs and 46% for inconsistent

CREs, on average) in a variety of models. The detection

runtime was 10.35 ms in the worst case, thus the approach

can be applied without causing overhead. As the number of

inconsistencies in a group is not directly impacted by the

size of the model, the approach is scalable.

Using dependencies during repair: Table II presents the

repair results considering the groups with only inconsistencies

grouped by CR (for some CRs, there was no group with

only inconsistencies). The number of overlapping repairs was

14.57 on average, while conflicts were twice as that (32.15).

This shows that identifying conflicting repairs from a group of

inconsistencies is more common than identifying overlapping

repairs. Furthermore, shared repair locations found between

inconsistencies stayed at 21.58 on average. Considering that

the total average of repairs generated was 55.40, the approach

identified around 26% overlaps, 58% conflicts, and 39% shared

2Detailed results are available in the online appendix [39].

TABLE II: Repair results grouped by CR

CRs Repairs Overlaps Conflicts Shared Loc.

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

01 12.98 7.35 7.53 3.89 4.93 5.54 4.33 3.51
02 11.00 0 1.74 1.9 4.71 1.06 4.71 1.06
03 9.00 0 7.04 1.32 6.16 3.07 2.98 1.5
09 21.00 0 1.70 2 8.89 2.65 8.89 2.65
10 12.07 6.78 6.18 3.03 7.32 3.84 4.71 4.05
11 12.31 5.71 4.92 3.5 5.45 4.21 4.96 3.7
16 8.06 0.72 6.95 0.7 2.05 0.68 2.04 0.46
20 11.00 0 1.74 1.9 4.71 1.06 4.71 1.06
22 357.25 68.24 69.36 46.22 209.69 50.56 140.40 33.25
23 109.23 64.15 13.31 19.91 56.78 26.42 46.60 29.75
24 45.53 20.71 39.82 24.12 43.00 21.58 13.01 9.31

Avg. 55.40 15.79 14.57 9.86 32.15 10.97 21.58 8.21

Fig. 6: Summary of results about repairs overlapping, conflict-

ing and fixed locations from inconsistency groups.

locations on average. These results show that practitioners can
benefit from dependencies during the selection of repairs as
they can focus on specific locations, select overlapping repairs
that fix multiple inconsistencies, or filter out a large number
of conflicts. These results are also evident when considering

the number of dependencies per group.

Figure 6 summarizes the results related to the identification

of conflicts, overlaps, and fixing locations inside the groups of

dependencies.3 For both conflicting and overlapping repairs,

the average number increases as more dependencies were

considered from a group (recall that we collected these results

using all possibilities for all groups with at least two incon-

sistencies being considered). As illustrated by Figure 6, the

number of conflicts was higher than overlaps, staying above

50% of the total repairs when at least 3 inconsistencies were

considered from the group. This behavior demonstrates that by
considering the conflicts between dependent inconsistencies,
practitioners can filter out a considerable number of repairs.

The number of overlaps is lower than the conflicts, however,

it also grows as the number of dependencies increases. This

evidences that when aiming at fixing multiple inconsistencies
with one repair, the dependencies can be used to gather and
analyze these possibilities.

3Details about these results are available in the online appendix [39].

154

When considering the shared repair locations, increasing the

number of dependencies considered from a group, reduced

the shared locations. Recall that the number of shared lo-

cations (i.e., elements and properties modified by repairs) is

collected by only counting the locations that are shared by all

dependencies considered. Thus, by considering the repairs of
groups with more dependencies, the number of fixing locations
is reduced.

Answering RQ2: Groups of dependent inconsistencies can

be used to identify conflicting repairs that can be filtered out

(58% avg.). Also, inconsistencies with dependencies may be

repaired together, using overlapping repairs (26% avg.). For

both cases, the number increases the more dependencies are

considered. Consequently, the number of fixing locations can

be reduced (39% avg.).

D. Threats to Validity

In this section, we present threats related to internal, exter-

nal, and conclusion validity [41], [42]. Considering the inter-
nal validity, we mitigated a threat related to the selection of

the models by using models from different related work [19],

[29], [30] (ranging from 79 to 9,823 model elements). This

resulted in a range from 94 to 14,510 of CREs. Another threat

is the CRs used, as the inconsistencies identified originate from

them. The set of 27 CRs used was obtained from related work

that systematically collected CRs that are important for UML

models [33], evaluating their importance with probationers of

the field [15]. These CRs contain different expression types

and evaluate different contexts [39]. The results regarding the

number of CREs per model support our claim that this threat

was mitigated as the majority of the model elements were

evaluated in most cases.

Regarding the external validity, a threat is related to the gen-

eralization of our results to other domains. In this evaluation,

we used UML models, so we only have evidence to support

the applicability of our approach with this kind of artifact.

Our approach, however, can be adopted in other domains. As

mentioned, the metamodel (Section III-A) aims to be generic

and applicable to different model types and CR languages. The

only requirement is the development of parsers to transform

artifacts from different tools to be represented using our

metamodel. For the evaluation presented in this paper, we

have implemented a UML/EMF parser to load the UML files

used into the server where our prototype implementation of

the approach is running as a service.

For conclusion validity, a threat is related to the repairs

considered for RQ2 data collection. The repair generation used

as part of our approach was based on approaches from the

literature [4], [7], [19]. These approaches have been evaluated

with a large set of UML models in terms of scalability

correctness and benefits [43]. Hence, these approaches are

reliable to be used as the basis for our repair generation. This

is supported by the number of repairs generated, which varied

for each model. Furthermore, as different repair generation

strategies may lead to different repairs being considered, we

plan to consider other repair approaches [27], [28] for future

evaluations to increase the generalization of the results found.

V. LESSONS LEARNED AND RESEARCH OPPORTUNITIES

In this section, we discuss the limitations and lessons

learned from the results of our evaluation.

Filters for CRE dependencies: Results from Table I show

that the number of dependencies can be high in some cases,

e.g., model 1 had more than 9k dependencies. When using

dependencies to deal with inconsistencies, practitioners may

be overwhelmed by these quantities. Thus, we argue that

filters for CRE dependencies may be applied to retrieve a

subset of focused dependencies. One possibility is to use the

CRs themselves as filters, retrieving only dependencies from

a specific CR. More elaborate filters can also be created, such

as, only retrieving dependencies that are related to certain parts

of the model. The proposal of such filters and their benefits

and drawbacks remains an open research opportunity.

Using dependencies to select or filter out repairs: Repair

approaches struggle to handle large sets of repair alternatives,

as even one inconsistency may generate thousands of alterna-

tives [44], [45]. The results from RQ2 show that groups of

inconsistencies with a large number of dependencies, on one

hand, are more difficult to repair, as one repair can generate

conflicts with other repairs. On the other hand, one repair

might be able to fix more than one inconsistency. A similar

idea applies to groups with fewer dependencies among incon-

sistencies but in an opposite way. Results also evidence that

the repair activity can be impacted by dependencies among

inconsistencies. Knowing which are the conflicting repairs

with regard to a given inconsistency enables practitioners to

filter out these repairs from the set of potential repairing

options. Also, the set of repairs that are similar for different

inconsistencies can be prioritized by practitioners, as these

repairs can fix multiple inconsistencies, thus reducing fixing

locations. Evaluating the benefits of dependencies from the

perspective of practitioners requires a case study with human

participants and remains as future work.

Lack of dependencies for some CRs: There were cases

where dependencies were not found between inconsistencies

from specific CRs. These results (available at [39]), show

that CRs 4-8, 12-14, and 17-19 had no inconsistencies with

dependencies. This shows that the current strategy to analyze

dependencies may not be relevant depending on the set of

CRs used. Since the dependency analysis is based on the

CRs definition, this is the main limitation of our approach.

Thus, additional strategies to find dependencies have to be

considered such as: user-ownership—inconsistencies that af-

fect model elements owned by a specific user (important for

collaborative engineering [2], [40]), or change-frequency—

model elements that are often (or not often) changed. Since

one of the benefits of dependencies is to analyze and reduce

repair alternatives, having different strategies for dependency

analysis can enhance the approach with more customization

155

options for different contexts. Investigating these different

strategies is part of our future work.

Change propagation: One strategy to maintain models consis-

tent when a change happens is the propagation of this change.

For instance, by propagating the Change 2 from Figure 1

to the inconsistencies created, these inconsistencies could be

fixed as the values required for fixing them are those created

in the change (i.e., grab and release). Repairing inconsis-

tencies, however, may lead to ambiguous repair alternatives.

For instance, undoing Change 2 may be a better option

than propagating the change. This, however, may still not

be true for all cases as practitioners tend to have different

preferences when repairing models [43]. Because of this, we

argue that approaches should provide practitioners with useful

information, such as dependencies, that can be used to reason

about repair alternatives.

VI. RELATED WORK

Considering the current state of the art, Torres et al. [46]

collected a set of 119 CRs used for UML models. A subset

of these rules is part of our set of 27 CRs applied in the

evaluation. Not all rules from their set were used because they

cannot be represented in OCL. We did, however, analyzed the

textual similarity of their set of 119 CRs. The results show that

some CRs have 100% semantic similarity with others, with the

majority of CRs having around 10% semantic similarity with

all others on average (results at [39]). These results support

our argument regarding Assumption 1 since CRs with similar

definitions show possible dependencies. This happens because

dependencies are found when CRs assess the same properties

of the same element types. Thus, the more similar two CRs

are, the more likely they are to assess the same properties of

the same elements. Other systematic studies have discussed

the importance and applicability of consistency maintenance

in design models, such as UML [3], [17], [33].

Consistency maintenance and repair generation are topics

that have been extensively investigated [15], [20]–[23], [28],

[30], [31], [47], [48]. The possible dependencies between CRs

or inconsistencies, however, have only been explored by a few

studies. For instance, Wu [35], [49] presents QMaxUSE, a

tool that detects conflict relationships between CRs. These

conflicts are found when one or more CRs have in their

definition conditions that cannot be solved at the same time

(i.e., contradictory). This is similar to how our approach

explores inconsistency dependencies to find conflicting repairs.

QMaxUSE, however, is focused on the CR level, not analyzing

CREs or possible repairs, limiting its applicability depending

on the set of CRs used.

Nöhrer et al. [24], [25] explore the relationship of in-

consistencies to find overlapping repairs (similar to how we

analyzed for RQ2). In their case, they generate repairs for

all inconsistencies and randomly group them, aiming to find

overlaps. Their approach shows the potential of grouping

inconsistencies, however, it is inefficient as randomly grouping

inconsistencies may lead to no overlaps found. Also, if random

groups do not represent practical scenarios, then, their results

might not be applicable to real cases. In a different direction,

the work from Clariso et al. [50] extends OCL, including

uncertainty in the CRs. The results show that uncertainties can

be used to perform preliminary quality checks, i.e., detecting

inconsistencies. The approach, however, does not explore

the relationships between CRs and how inconsistencies can

depend on each other.

Despite that most studies on consistency maintenance de-

fine CRs in plain English [33], these CRs are usually not

supported by automated approaches. This happens because

using natural language is still limited to only a few approaches

that transform the written sentences into CRs of a specific

language [51], [52], focusing on checking requirements [53].

There is an initial effort into using natural language process-

ing (NLP) to transform CRs defined in natural language to

OCL [54], [55]. This is a natural direction, as defining CRs

in OCL is complex and tedious. Foreseeing the use of NLP

for defining CRs, we defined the metamodel of our approach

in a way that it can be adapted for different CR languages,

including natural language. The dependency analysis, however,

requires the property-element structure, which can be obtained

through NLP [55].

VII. CONCLUSION

In this paper, we explored possible assumptions regarding

dependencies of CRs and inconsistencies and how they can

improve the consistency maintenance process. Our approach

defines a metamodel used to express these dependencies. The

consistency maintenance and dependency analysis proposed

are used to detect dependencies and provide them for repair

generation. During the repair generation, the approach can

obtain valuable information about inconsistencies, aiding prac-

titioners in repairing the model by considering conflicting and

overlapping repairs. To evaluate our approach, we conducted

an empirical evaluation showing how the approach can be

applied in a variety of UML models with a large set of CRs (on

a satisfactory time). The results also show that dependencies

can be used to group inconsistencies, proving a mechanism to

identify a large number of overlapping and conflicting repairs.

These results can then be used to minimize the impact on the

model by reducing the repairing locations. Future directions

of our research include exploring the use of filters to define

subsets of dependencies based on the CRs, model elements,

and user preferences. In addition, we plan to conduct a case

study with human participants to evaluate the approach from

their perspective.

DATA AVAILABILITY

Additional information about the approach, the evaluation’s

artifacts and results are available in an online appendix [39].

ACKNOWLEDGEMENTS

This research has been funded by the Austrian Science Fund

(FWF, P31989-N31), and by the FFG-COMET-K1 Center

“Pro2Future”, (881844).

156

REFERENCES

[1] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw, “Automated consis-
tency checking of requirements specifications,” ACM Trans. Softw. Eng.
Methodol., vol. 5, no. 3, p. 231–261, jul 1996.

[2] I. David, K. Aslam, I. Malavolta, and P. Lago, “Collaborative model-
driven software engineering — a systematic survey of practices and
needs in industry,” Journal of Systems and Software, vol. 199, p. 111626,
5 2023.

[3] W. Torres, M. G. Van den Brand, and A. Serebrenik, “A systematic
literature review of cross-domain model consistency checking by model
management tools,” Software and Systems Modeling, pp. 1–20, 2020.

[4] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein, “xlinkit: a
consistency checking and smart link generation service.” ACM Trans.
Internet Techn., vol. 2, no. 2, pp. 151–185, 2002.

[5] C. Nentwich, W. Emmerich, and A. Finkelstein, “Consistency manage-
ment with repair actions,” in 25th International Conference on Software
Engineering, 2003. Proceedings., 2003, pp. 455–464.

[6] A. Egyed, “Fixing Inconsistencies in UML Design Models,” in ICSE
’07: 29th International Conference on Software Engineering. Wash-
ington, DC, USA: IEEE Computer Society, 2007, pp. 292–301.

[7] A. Reder and A. Egyed, “Computing repair trees for resolving incon-
sistencies in design models.” in ASE. ACM, 2012, pp. 220–229.

[8] I. Pete and D. Balasubramaniam, “Handling the differential evolution of
software artefacts: A framework for consistency management,” in 2015
IEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), 2015, pp. 599–600.

[9] L. Marchezan, W. K. G. Assunção, G. Michelon, E. Herac, and
A. Egyed, “Code smell analysis in cloned java variants: The apo-
games case study,” in International Systems and Software Product
Line Conference - Volume A, ser. SPLC ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 250–254.

[10] S. Maro, A. Anjorin, R. Wohlrab, and J.-P. Steghöfer, “Traceability
maintenance: Factors and guidelines,” in Proceedings of the
31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 414–425. [Online]. Available:
https://doi.org/10.1145/2970276.2970314

[11] S. Herold, M. English, J. Buckley, S. Counsell, and M. Cinnéide,
“Detection of violation causes in reflexion models,” in 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), 2015, pp. 565–569.

[12] H. König and Z. Diskin, “Efficient consistency checking of interrelated
models,” in 13th European Conference Modelling Foundations and
Applications (ECMFA). Springer, 2017, pp. 161–178.

[13] D. Torre, M. Genero, Y. Labiche, and M. Elaasar, “How consistency
is handled in model driven software engineering and uml: a survey of
experts in academia and industry,” Carleton University, Tech. Rep., 2018.

[14] L. Marchezan, W. K. G. Assunção, E. Herac, F. Keplinger, A. Egyed,
and C. Lauwerys, “Fulfilling industrial needs for consistency among
engineering artifacts,” in 45th International Conference on Software
Engineering (ICSE) - Software Engineering in Practice, 2023, pp. 1–12.

[15] D. Torre, M. Genero, Y. Labiche, and M. Elaasar, “How consistency
is handled in model-driven software engineering and uml: an expert
opinion survey,” Software Quality Journal, pp. 1–54, 2022.

[16] R. Jongeling, F. Ciccozzi, J. Carlson, and A. Cicchetti, “Consistency
management in industrial continuous model-based development settings:
A reality check,” Software and Systems Modeling, vol. 21, no. 4, p.
1511–1530, aug 2022.

[17] F. J. Lucas, F. Molina, and A. Toval, “A systematic review of UML
model consistency management,” Information and Software Technology,
vol. 51, no. 12, pp. 1631–1645, 2009, quality of UML Models.

[18] N. Macedo, T. Jorge, and A. Cunha, “A feature-based classification of
model repair approaches,” IEEE Transactions on Software Engineering,
vol. 43, no. 7, pp. 615–640, 2017.

[19] L. Marchezan, R. Kretschmer, W. K. Assunção, A. Reder, and A. Egyed,
“Generating repairs for inconsistent models,” Software and Systems
Modeling, pp. 1–33, 2022.

[20] A. Reder and A. Egyed, “Incremental consistency checking for complex
design rules and larger model changes,” in 15th International Confer-
ence Model Driven Engineering Languages and Systems (MODELS).
Springer, 2012, pp. 202–218.

[21] R. Kretschmer, D. E. Khelladi, A. Demuth, R. E. Lopez-Herrejon, and
A. Egyed, “From Abstract to Concrete Repairs of Model Inconsisten-

cies: An Automated Approach,” in Asia-Pacific Software Engineering
Conference, 2017, pp. 456–465.

[22] M. Ohrndorf, C. Pietsch, U. Kelter, and T. Kehrer, “ReVision: A Tool for
History-Based Model Repair Recommendations,” in 40th International
Conference on Software Engineering (ICSE). ACM, 2018, pp. 105–108.

[23] N. Nassar, H. Radke, and T. Arendt, “Rule-based repair of emf models:
An automated interactive approach,” in Theory and Practice of Model
Transformation. Springer, 2017, pp. 171–181.

[24] A. Nöhrer and A. Egyed, “Utilizing the relationships between incon-
sistencies for more effective inconsistency resolution.” in Workshop on
Living with Inconsistencies in Software Development, 2010, pp. 39–43.

[25] A. Nöhrer, A. Reder, and A. Egyed, “Positive effects of utilizing
relationships between inconsistencies for more effective inconsistency
resolution,” in 33rd International Conference on Software Engineering
(ICSE). ACM, 2011, p. 864–867.

[26] D. E. Khelladi, R. Kretschmer, and A. Egyed, “Detecting and Exploring
Side Effects When Repairing Model Inconsistencies,” in 12th ACM
SIGPLAN International Conference on Software Language Engineering.
ACM, 2019, pp. 113–126.

[27] M. Ohrndorf, C. Pietsch, U. Kelter, L. Grunske, and T. Kehrer, “History-
Based Model Repair Recommendations,” ACM Trans. Softw. Eng.
Methodol., vol. 30, no. 2, Jan. 2021.

[28] A. Barriga, A. Rutle, and R. Heldal, “Improving model repair through
experience sharing.” J. Object Technol., vol. 19, no. 2, pp. 13–1, 2020.

[29] R. Kretschmer, D. E. Khelladi, and A. Egyed, “Transforming abstract
to concrete repairs with a generative approach of repair values,” Journal
of Systems and Software, vol. 175, p. 110889, 2021.

[30] D. Torre, Y. Labiche, M. Genero, M. Elaasar, and C. Menghi, “Uml
consistency rules: A case study with open-source uml models,” in 8th
International Conference on Formal Methods in Software Engineering.
ACM, 2020, p. 130–140.

[31] L. Marchezan, W. K. G. Assuncao, R. Kretschmer, and A. Egyed,
“Change-oriented repair propagation,” in International Conference on
Software and System Processes and International Conference on Global
Software Engineering. ACM, 2022, p. 82–92.

[32] OMG, “OCL Specification,” http://www.omg.org/spec/OCL/, 2014.
[33] D. Torre, Y. Labiche, and M. Genero, “Uml consistency rules: A

systematic mapping study,” in International Conference on Evaluation
and Assessment in Software Engineering (EASE). ACM, 2014.

[34] OMG, “UML 2.5.1 Specification,” https://www.omg.org/spec/UML/,
2017.

[35] H. Wu, “Maxuse: A tool for finding achievable constraints and conflicts
for inconsistent uml class diagrams,” in Integrated Formal Methods.
Cham: Springer International Publishing, 2017, pp. 348–356.

[36] G. Soltana, M. Sabetzadeh, and L. C. Briand, “Practical constraint
solving for generating system test data,” ACM Trans. Softw. Eng.
Methodol., vol. 29, no. 2, 2020.

[37] A. Egyed, “Instant Consistency Checking for the UML,” in 28th In-
ternational Conference on Software Engineering, ser. ICSE ’06. New
York, NY, USA: ACM, 2006, pp. 381–390.

[38] A. Barriga, R. Heldal, L. Iovino, M. Marthinsen, and A. Rutle, “An ex-
tensible framework for customizable model repair,” in 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, ser. MODELS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 24–34.

[39] L. Marchezan, W. K. G. Assunção, E. Herac, S. Shafiq, and
A. Egyed, “Exploring Dependencies Among Inconsistencies to Enhance
Models Consistency Maintenance (Online Appendix),” 2023. [Online].
Available: https://sites.google.com/view/crdependenciessaner2023/

[40] E. Herac, W. Assunção, L. Marchezan, R. Haas, and A. Egyed, “A
flexible operation-based infrastructure for collaborative model-driven
engineering,” vol. 22, no. 2, Jul. 2023, pp. 2:1–14, the 19th European
Conference on Modelling Foundations and Applications (ECMFA 2023).

[41] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[42] S. Easterbrook, “Empirical research methods for software engineering,”
in Twenty-Second IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 574.

[43] L. Marchezan, W. K. G. Assunção, G. K. Michelon, and A. Egyed, “Do
developers benefit from recommendations when repairing inconsistent
design models? a controlled experiment,” in 27th International Confer-
ence on Evaluation and Assessment in Software Engineering (EASE),
2023, pp. 1–10.

157

[44] A. Reder and A. Egyed, “Determining the Cause of a Design Model
Inconsistency,” Transaction on Software Engineering (TSE), 2013.

[45] R. Kretschmer, D. E. Khelladi, R. E. Lopez-Herrejon, and A. Egyed,
“Consistent change propagation within models,” Software and Systems
Modeling, pp. 1–17, 2020.

[46] D. Torre, Y. Labiche, M. Genero, and M. Elaasar, “A systematic
identification of consistency rules for uml diagrams,” Journal of Systems
and Software, vol. 144, pp. 121–142, 2018.

[47] C. Nentwich, W. Emmerich, and A. Finkelsteiin, “Consistency man-
agement with repair actions,” in International Conference on Software
Engineering, ser. ICSE ’03. IEEE, 2003, pp. 455–464.

[48] M. A. Tröls, L. Marchezan, A. Mashkoor, and A. Egyed, “Instant and
global consistency checking during collaborative engineering,” Software
and Systems Modeling, pp. 1–27, 2022.

[49] H. Wu, “Qmaxuse: A new tool for verifying uml class diagrams and ocl
invariants,” Science of Computer Programming, p. 102955, 2023.

[50] R. Clarisó, L. Burgueño, and J. Cabot, “Managing design-time uncer-
tainty in ocl expressions,” Journal of Object Technology, vol. 21, no. 4,
pp. 4:1–10, Oct. 2022.

[51] R. Yan, C.-H. Cheng, and Y. Chai, “Formal consistency checking over
specifications in natural languages,” in 2015 Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2015, pp. 1677–1682.

[52] V. Bertram, M. Boß, E. Kusmenko, I. H. Nachmann, B. Rumpe,
D. Trotta, and L. Wachtmeister, “Neural language models and few shot
learning for systematic requirements processing in mdse,” in 15th ACM
SIGPLAN International Conference on Software Language Engineering.
ACM, 2022, p. 260–265.

[53] I. Buzhinsky, “Formalization of natural language requirements into
temporal logics: a survey,” in 2019 IEEE 17th International Conference
on Industrial Informatics (INDIN), vol. 1, 2019, pp. 400–406.

[54] S. Salemi, A. Selamat, and M. Penhaker, “A model transformation
framework to increase ocl usability,” Journal of King Saud University -
Computer and Information Sciences, vol. 28, no. 1, pp. 13–26, 2016.

[55] J. Cabot, D. Delgado, and L. Burgueño, “Combining OCL and Natural
Language: A Call for a Community Effort,” in 25th International
Conference on Model Driven Engineering Languages and Systems
(MODELS). ACM, 2022, p. 908–912.

158

